A Survey on Particle Swarm Optimization Algorithms for Multimodal Function Optimization

نویسندگان

  • Yu Liu
  • Xiaoxi Ling
  • Zhewen Shi
  • Mingwei Lv
  • Jing Fang
  • Liang Zhang
چکیده

Many scientific and engineering applications involve finding more than one optimum. A comprehensive review of the existing works done in the field of multimodal function optimization was given and a critical analysis of the existing methods was also provided. Several techniques in solving multimodal function optimization problems were introduced, such as clearing, deterministic crowding, sharing, species conserving and so on. And we summarized defects of existing algorithms: lacking of self-adaptive adjustment function, requiring setting some parameters according to different problems, lacking of unified theoretical and experimental system to guide algorithms design and not maintaining the diversity of swarm. Moreover, most of existing multimodal particle swarm optimization algorithms which include SPSO, MSPSO, ESPSO, ANPSO, kPSO, MGPSO, AT-MGPSO, rpso, and SDD-PSO were described and compared and advantages and disadvantages existing in these algorithms were pointed out. Therefore, some ideas to improve the performance of multimodal function optimization algorithms were proposed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants

Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identif...

متن کامل

Comparison of particle swarm optimization and tabu search algorithms for portfolio selection problem

Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we  optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JSW

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011